4723 Mark Scheme January 2010

4723 Core Mathematics 3

1		Obtain integral of form $k(2x-7)^{-1}$	M1 any constant <i>k</i>
		Obtain correct $-5(2x-7)^{-1}$	A1 or equiv
		Include $+ c$	B1 3 at least once; following any integral 3
2	(i)	Use $\sin 2\theta = 2\sin\theta\cos\theta$ Attempt value of $\sin\theta$ from $k\sin\theta\cos\theta = 5\cos\theta$ Obtain $\frac{5}{12}$	B1 M1 any constant <i>k</i> ; or equiv A1 3 or exact equiv; ignore subsequent work
	(ii)	Use $\csc \theta = \frac{1}{\sin \theta}$ or $\csc^2 \theta = 1 + \cot^2 \theta$	B1 or equiv
		Attempt to produce equation involving $\cos \theta$ only Obtain $3\cos^2 \theta + 8\cos \theta - 3 = 0$ Attempt solution of 3-term quadratic equation	M1 using $\sin^2 \theta = \pm 1 \pm \cos^2 \theta$ or equiv A1 or equiv M1 using formula or factorisation or equiv
		Obtain $\frac{1}{3}$ as only final value of $\cos \theta$	A1 5 or exact equiv; ignore subsequent work
3	(i)	Obtain or clearly imply $60 \ln x$ Obtain ($60 \ln 20 - 60 \ln 10$ and hence) $60 \ln 2$	B1 B1 2 with no error seen
	(ii)	Attempt calculation of form $k(y_0 + 4y_1 + y_2)$ Identify k as $\frac{5}{3}$	M1 any constant k; using y-value attempts A1
		Obtain $\frac{5}{3}(6+4\times4+3)$ and hence $\frac{125}{3}$ or 41.7	A1 3 or equiv
	(iii)	Equate answers to parts (i) and (ii) Obtain $60 \ln 2 = \frac{125}{3}$ and hence $\frac{25}{36}$	M1 provided ln 2 involved A1 2 AG; necessary detail required including clear use of an exact value from (ii) 7
4	(i)	Attempt correct process for composition Obtain (7 and hence) 0	M1 numerical or algebraic A1 2
	(ii)	Attempt to find <i>x</i> -intercept Obtain $x \le 7$	M1 A1 2 or equiv; condone use of <
	 (iii)	Attempt correct process for finding inverse Obtain $\pm (2-y)^3 - 1$ or $\pm (2-x)^3 - 1$ Obtain correct $(2-x)^3 - 1$	M1 A1 A1 3 or equiv in terms of x
	 (iv)	Refer to reflection in $y = x$	B1 1 or clear equiv

4723 **Mark Scheme** January 2010

5	(i)	Obtain derivative of form $kx(x^2 + 1)^7$	M1	any constant k
		Obtain $16x(x^2 + 1)^7$	A1	or equiv
		Equate first derivative to 0 and confirm $x = 0$ or		
		substitute $x = 0$ and verify first derivative zero	M1	AG; allow for o
	Refer, in some way, to $x^2 + 1 = 0$ having no root		A1 4 or equiv	
	 (ii)	Attempt use of product rule	*M1	obtaining +
		Obtain $16(x^2+1)^7 +$	A1√	follow their kx(

- low for deriv of form $kx(x^2+1)^7$

ing ... + ... form their $kx(x^2+1)^7$ Obtain ... + $224x^2(x^2+1)^6$ A1 $\sqrt{1}$ follow their $kx(x^2+1)^7$; or unsimplified equiv Substitute 0 in attempt at second derivative dep *M M1Obtain 16 A1 5 from second derivative which is correct at some point

Integrate e^{3x} to obtain $\frac{1}{2}e^{3x}$ or $e^{-\frac{1}{2}x}$ to obtain $-2e^{-\frac{1}{2}x}$ 6 or both Obtain indefinite integral of form $m_1 e^{3x} + m_2 e^{-\frac{1}{2}x}$ M1 any constants m_1 and m_2 Obtain correct $\frac{1}{3}ke^{3x} - 2(k-2)e^{-\frac{1}{2}x}$ **A**1 or equiv Obtain $e^{3\ln 4} = 64$ or $e^{-\frac{1}{2}\ln 4} = \frac{1}{2}$ **B**1 or both Apply limits and equate to 185 including substitution of lower limit M1 Obtain $\frac{64}{3}k - (k-2) - \frac{1}{3}k + 2(k-2) = 185$ or equiv Obtain $\frac{17}{2}$ A1 7 or equiv 7

7 (a) Either: State or imply either $\frac{dA}{dr} = 2\pi r$ or $\frac{dA}{dt} = 250$ or both Attempt manipulation of derivatives to find $\frac{dr}{dt}$ M1using multiplication / division Obtain correct $\frac{250}{2\pi r}$ **A**1 or equiv Obtain 1.6 A1 4 or equiv; allow greater accuracy Attempt to express r in terms of tOr: M1using A = 250tObtain $r = \sqrt{\frac{250t}{\pi}}$ A1or equiv Differentiate $kt^{\frac{1}{2}}$ to produce $\frac{1}{2}kt^{-\frac{1}{2}}$ M1any constant k Substitute t = 7.6 to obtain 1.6 A1 (4) allow greater accuracy

4723 **Mark Scheme** January 2010

(b)	State $\frac{dm}{dt} = -150ke^{-kt}$	

B1

Equate to $(\pm)3$ and attempt value for t

using valid process; condone sign M1 confusion

Obtain
$$-\frac{1}{k}\ln(\frac{1}{50k})$$
 or $\frac{1}{k}\ln(50k)$ or $\frac{\ln 50 + \ln k}{k}$

A1 3 or equiv but with correct treatment of

signs 7

(i) State scale factor is $\sqrt{2}$ 8 State translation is in negative *x*-direction by $\frac{3}{2}$ units

B1 allow 1.4

B1 or clear equiv

B1 3

B1

(ii) Draw (more or less) correct sketch of $y = \sqrt{2x+3}$

Draw (more or less) correct sketch of $y = \frac{N}{x^3}$

B1 'starting' at point on negative x-axis showing both branches

Indicate one point of intersection

B1 3 with both sketches correct

[SC: if neither sketch complete or correct but diagram correct for both in first quadrant B1]

(iii) (a) Substitute 1.9037 into $x = N^{\frac{1}{3}} (2x+3)^{-\frac{1}{6}}$

Obtain 18 or value rounding to 18

M1 or into equation $\sqrt{2x+3} = \frac{N}{r^3}$; or equiv

A1 2 with no error seen

(b) State or imply $2.6282 = N^{\frac{1}{3}}(2 \times 2.6022 + 3)^{-\frac{1}{6}}$ Attempt solution for N Obtain 52

B1

using correct process

A1 3 concluding with integer value

(i) Identify $\tan 55^{\circ}$ as $\tan(45^{\circ}+10^{\circ})$

Use correct angle sum formula for tan(A+B)

B1 or equiv

M1or equiv

A1 3 with tan 45° replaced by 1

(ii) Either: Attempt use of identity for tan 2A

Obtain $p = \frac{2t}{1-t^2}$

*M1 linking 10° and 5° A1

Attempt solution for t of quadratic equation M1

dep *M

Obtain $\frac{-1+\sqrt{1+p^2}}{p}$

A1 4 or equiv; and no second expression

Or (1): Attempt expansion of $tan(60^{\circ}-55^{\circ})$

*M1

Obtain $\frac{\sqrt{3} - \frac{1+p}{1-p}}{1 + \sqrt{3} \frac{1+p}{1-p}}$

A1 $\sqrt{}$ follow their answer from (i)

Attempt simplification to remove

denominators

dep *M

Obtain $\frac{\sqrt{3}(1-p)-(1+p)}{1-p+\sqrt{3}(1+p)}$

A1 (4) or equiv 4723 Mark Scheme January 2010

Or (2): State or imply $\tan 15^\circ = 2 - \sqrt{3}$ B1

Attempt expansion of $tan(15^{\circ}-10^{\circ})$ M1 with exact attempt for $tan 15^{\circ}$

Obtain $\frac{2-\sqrt{3}-p}{1+p(2-\sqrt{3})}$ A2 (4)

Or (3): State or imply $\tan 15^\circ = \frac{\sqrt{3}-1}{\sqrt{3}+1}$ B1 or exact equiv

Attempt expansion of $tan(15^{\circ}-10^{\circ})$ M1 with exact attempt for $tan 15^{\circ}$

Obtain $\frac{\sqrt{3} - 1 - p\sqrt{3} - p}{\sqrt{3} + 1 + p\sqrt{3} - p}$ A2 (4) or equiv

Or (4): Attempt expansion of $tan(10^{\circ}-5^{\circ})$ *M1

Obtain $t = \frac{p-t}{1+pt}$ A1

Attempt solution for t of quadratic equation M1 dep *M

Obtain $\frac{-2+\sqrt{4+4p^2}}{2p}$ A1 (4) or equiv; and no second

expression

(iii) Attempt expansion of both sides M1

Obtain $3\sin\theta\cos 10^\circ + 3\cos\theta\sin 10^\circ = 7\cos\theta\cos 10^\circ + 7\sin\theta\sin 10^\circ$ A1 or equiv

Attempt division throughout by $\cos\theta\cos 10^\circ$ M1 or by $\cos\theta$ (or $\cos 10^\circ$) only

Obtain 3t + 3p = 7 + 7pt A1 or equiv

Obtain $\frac{3p-7}{7p-3}$ A1 5 or equiv

12